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ABSTRACT

The National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS) is

underdispersive near the surface, a common characteristic of ensemble prediction systems. Here, several

methods for increasing the spread are tested, including perturbing soil initial conditions, soil tendencies, and

surface parameters, with physically based perturbations. Perturbations are applied to the soil initial condi-

tions based on empirical orthogonal functions (EOFs) of differences between normalized soil moisture states

from two land surface models (LSMs). Perturbations to roughness lengths for heat and momentum, soil

hydraulic conductivity, stomatal resistance, vegetation fraction, and albedo are applied, with the amplitude

and perturbation scales based on previous research. Soil moisture and temperature tendencies are also

perturbed using a stochastic perturbation scheme. The results show that surface perturbations, through their

impact on 2-m temperature spread, have a modest positive impact on the skill of short-range ensemble

forecasts. However, adjusting the forecasts using an estimate of the systematic bias shows that bias correction

has a greater impact on the forecast reliability than surface perturbations, indicating that systematic bias in the

model needs to be addressed as well.

1. Introduction

The current National Centers for Environmental

Prediction (NCEP) Global Ensemble Forecast System

(GEFS; Zhou et al. 2017) is underdispersive, biased near

the surface, or both. Like many other ensemble predic-

tion systems (EPSs; Hamill and Colucci 1997; Buizza

et al. 2000;Mullen andBuizza 2001; Hamill andWhitaker

2007) the GEFS produces an ensemble with too little

spread and too high ensemble-mean error. Hamill and

Colucci (1997) showed that the Eta-RSM 850-hPa

temperature and precipitation rank histogram distribu-

tions are U shaped. Buizza et al. (2000) showed that

spread in the ECMWF EPS was too small compared to

ensemble-mean error over Europe. Mullen and Buizza

(2001) showed that rank histograms of precipitation

forecasts in the ECMWF EPS are U shaped and Hamill

and Whitaker (2007) showed similar behavior for 2-m

temperature in the NCEP GFS. Ensembles tend to be

more certain in their forecast than warranted, making

decision support based on ensembles suboptimal. Ideally,

ensemble forecasts should exhibit consistency between

the spread of the ensemble and the root-mean-square

error (RMSE) of the ensemble mean with respect to the

truth (Fortin et al. 2014). Our hypothesis in this article is

that one of themajor causes of the insufficient spread is a

lack of treatment of uncertainty in the soil state and in

the associated land surface model (LSM) parameters,Corresponding author: Maria Gehne, maria.gehne@noaa.gov
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and that spread can be increased through the introduction

of realistic stochastic parameterizations of surface pa-

rameters and states. The LSM used in the GEFS is the

Noah LSM (Ek et al. 2003).

What if this hypothesis cannot be confirmed? A

possible explanation could be that we have not chosen

to perturb the correct variables or parameters, or

we have misestimated the magnitude of perturbations

needed. In an ideal ensemble, the mean state is un-

biased with respect to the verification data, which

itself is commonly assumed to be free of error. If there

are systematic biases, the RMSE will be enlarged,

reflecting contributions from both random and sys-

tematic error, and it will thus be unrealistic to expect

the introduction of stochastic methods related to land

surface variables to result in consistency between

spread and RMSE; the stochastic methods in general

are designed to deal with model uncertainty, not

ameliorate systematic error. For diagnostic purposes,

then, it may be more appropriate to compare spread

against the RMSE after systematic errors have been

removed, such as through an ex post facto bias cor-

rection of the mean (Ciach and Krajewski 1999;

Bowler 2008). Wang et al. (2018) show that it is nec-

essary to bias correct an ensemble forecast before

evaluating its skill, since the ensemble is expected

to account for random error and not systematic error.

Also, the assumption that the verification data is

perfect may be particularly inappropriate for surface-

related variables studied here, as land surface het-

erogeneity introduces large representativeness errors.

For improved near-surface predictions, we should

consider initial condition uncertainty of both the atmo-

spheric and the land state. Previous work found in-

troducing perturbations to soil moisture initial conditions

can increase the precipitation forecast spread (Sutton

et al. 2006). Lavaysse et al. (2013) show improved

skill in 2-m temperature (T2m) and 10-m wind speed

(U10m) forecasts when perturbing the initial conditions

for several surface parameters and variables using

stochastic perturbations. They show soil moisture state,

albedo, leaf area index, and SST perturbations had the

largest impact on T2m, though increase in spread was

modest. Atmospheric initial states are typically defined

through data assimilation (Hamill et al. 2011; Bonavita

et al. 2012; Houtekamer et al. 2014; Houtekamer and

Zhang 2016), combining two general types of infor-

mation, a model forecast background state and newly

available observations. Both data types have errors,

and consequently the initial state is imperfectly esti-

mated. Modern methods like the ensemble Kalman

filter (EnKF; Mitchell and Houtekamer 2000; Hamill

2006; Evensen 2009; Wang et al. 2013) that underpin

atmospheric data assimilation in the current GEFS

automatically estimate the initial state uncertainty.

For ensemble predictions, we seek an ensemble of

state estimates drawn from the probability distribution

of plausible analysis errors (Hamill et al. 2002). In con-

trast to the atmosphere, land-state uncertainty is more

challenging to estimate and approximations are cur-

rently necessary for initializing an ensemble of soil states

in the GEFS. An ensemble of initial state estimates

for the land surface is generated through forcing of the

land component of the Global Data Assimilation Sys-

tem (GDAS) with the GEFS member forecast model

precipitation, surface solar radiation, and near-surface

parameters: temperature, humidity, and wind speed

(Campana and Caplan 2005). Since there is no formal

soil state data assimilation in the GDAS the initial state

estimate may drift significantly from truth. To mitigate

model drift, soil moisture is nudged, with a 60-day re-

laxation, toward an externally supplied global soil

moisture monthly climatology (Campana and Caplan

2005). These soil state estimates inherited from the

GDAS may not represent a draw from the distribution

of plausible analysis states and in the operational GEFS

the surface initial conditions for all members are the

same as the control.

However, it may be possible in future versions of the

GEFS to simulate some uncertainty through a pro-

cedure of perturbing the soil state. Ensemble-based

methods are commonly used for land-only data as-

similation (Reichle et al. 2002), but are not yet part of

NCEP’s operational land-state estimation procedures.

Here, we propose a different way to generate per-

turbed soil initial conditions by considering differences

in soil states from two LSMs. Specifically, we will

generate perturbations based on empirical orthogonal

functions (EOFs) of differences between normalized

soil moisture states from these LSMs.

Model uncertainty is also a factor in the growth of

forecast error. This is a consequence of an imperfect

model due to finite resolution, imperfect numerics of

the dynamical core, and parameterization deficiencies.

While there havebeen recent efforts todevelopdistribution-

based parameterizations for some processes, most

operational parameterizations are still deterministic

(i.e., the response of a parameterization given the

large-scale state in a grid column is always the same).

In reality, the actual response can be sensitively de-

pendent upon the unresolved scales. Further, in the

context of the LSM there are several fixed parameters

that are not well known, such as values for roughness

lengths for heat and momentum, parameters related

to soil hydraulic conductivity, stomatal resistance,

and vegetation fraction (Clapp and Hornberger 1978;
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Betts and Beljaars 1993; Hamill 1997; Sutton et al.

2006; Lavaysse et al. 2013; Tennant and Beare 2014).

There are also potentially errors in the parameteri-

zations that can lead to growth of biases. Further,

subgrid-scale heterogeneity is not accounted for in the

Noah LSM used with the GEFS. The land surface type

(soil type and vegetation type) in a LSM grid cell is set

to the dominant type within that grid cell instead of

allowing multiple types in proportion to their actual

gridcell fraction. The vertical structure of the soil is

approximated by distinct layers of increasing thickness

with depth and the coarse vertical discretization may

be a source of model error. Empirical formulations for

snow cover, snowmelt, runoff, and interception of

precipitation by the vegetation cover are all necessarily

approximations.

In recent years, several methods have been pro-

posed to address atmospheric model uncertainty in

reasonably simple ways: stochastically perturbed pa-

rameterization tendencies (SPPT; Buizza et al. 1999;

Palmer et al. 2009, 2887–2908), the stochastic kinetic-

energy backscatter scheme (SKEB; Shutts 2005; Berner

et al. 2009) and the stochastic humidity perturbations

in the boundary layer scheme (SHUM; Tompkins and

Berner 2008) are, for example, planned for the up-

coming version of the GEFS. More details on these

can be found in section 2.

Perturbing physical constants within a parameteri-

zation is an alternative approach to using multiple

parameterizations for different members. Common

atmospheric constants or ‘‘parameters’’ to be perturbed

are related to the convection, boundary layer, micro-

physics, or radiative transfer scheme (Bowler et al.

2008; Hacker et al. 2011; Reynolds et al. 2011;

Leutbecher et al. 2017). Lavaysse et al. (2013) perturb

vegetation fraction, leaf area index, albedo, and

roughness length using multiplicative random pertur-

bations and find a small but positive impact on near-

surface spread. Ries et al. (2010) find a reduction in

wind speed bias by reducing sea ice surface roughness

length to an unrealistically small value. In a single

column setting Pitman (1994) shows model sensitivity

of latent and sensible heat fluxes, canopy temperature,

soil moisture and soil temperature to perturbations

of albedo, vegetation fraction, roughness length, and

saturated hydraulic conductivity among other LSM

parameters. Section 3 contains details on the pertur-

bation strategies explored here. Section 4 describes the

experiments.

The impacts of the surface perturbations are discussed

in section 5, with focus primarily on T2m. The focus on

T2m is due to the fact that there are reliable observations

available and that other variables in the GEFS show

limited sensitivity to the surface perturbations consis-

tent with previous studies. Impact of the perturbations

on other variables is mentioned where appropriate.

2. The Global Ensemble Forecast System

The version of GEFS used in this study is V11.0.0,

augmented by the stochastic physics schemes discussed

below, with semi-Lagrangian horizontal advection run

at T574 (roughly 27-km grid spacing) with 64 hybrid

vertical levels (Zhou et al. 2017). The output is available

at 6-h intervals and interpolated to a 18 grid.Model error

in the GEFS version used here is represented by using

three experimental stochastic physics schemes in de-

velopment for GEFS v12: SPPT, SHUM, and SKEB.

These replace the stochastic total tendency perturba-

tions (STTP) used in the operational GEFS v11.0.0.

Initial atmospheric perturbations are generated using

6-h EnKF background forecasts. For more details on the

GEFS V11.0.0 configuration, see Zhou et al. (2017).

SPPT represents uncertainty within physical pa-

rameterizations. In SPPT, random spatial patterns are

multiplied by the spatial patterns of the physical ten-

dencies of model variables (Buizza et al. 1999; Palmer

et al. 2009). The random spatial patterns have a specified

decay time and spatial decorrelation scale, but no

vertical variability, except that the amplitude is typi-

cally reduced near the surface and tapers to zero above

100 hPa for numerical stability (Palmer et al. 2009).

The random pattern for each level uses a length scale of

500 km and a time scale of 6 h.

The SHUM scheme is based on the idea that the ac-

tual triggering of deep convection will happen from

plumes below the scale of the model grid. There is a

stochastic aspect to the subgrid variability of tempera-

ture and moisture. The stochastic effect of this subgrid

variability within the parameterization of deep convec-

tion is estimated by perturbing the near-surface grid-

scale humidity field directly, multiplying that field by a

random pattern with mean 1.0 and variance that decays

exponentially with height. Tompkins and Berner (2008)

have implemented a stochastic convection scheme based

on this idea, but cautioned that this can decrease prob-

abilistic skill for some parameters in the medium range.

Here a single random pattern is used, with a length scale

of 500km and a time scale of 6 h.

SKEB was developed to model the upscale propaga-

tion of small-scale variability that is commonly lost

through numerical diffusion (Shutts 2005; Berner et al.

2009). SKEB introduces random perturbations to the

streamfunction with a prescribed power spectrum and

amplitude dependent on the local dissipation rate to

counteract excessive kinetic energy loss in regions with
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large dissipation. Unlike other implementations of SKEB,

the GFS implementation only considers numerical dissi-

pation, which is estimated by the magnitude of the

vorticity gradient following Palmer et al. (2009). The

omission of the mountain/gravity wave drag and con-

vection scheme’s contribution to dissipation is to avoid

the double counting of physics tendencies since SKEB

is intended to run concurrently with SPPT. The sto-

chastic patterns for SKEB in the GEFS are correlated

in the vertical by smoothing the patterns in the vertical

by approximately 30 passes of a 1–2–1 filter. The ran-

dom pattern for each level uses a length scale of

1000 km and a time scale of 6 h.

3. Stochastic surface perturbation methods and
verification procedures

Here, we seek ways of increasing near-surface spread

that are physically based. We hypothesize that a combi-

nation of state, parameter, and tendency perturbations

will increase the spread. We choose to perturb initial soil

moisture and temperature states (Sutton et al. 2006;

Lavaysse et al. 2013; Tennant and Beare 2014), rough-

ness length of heat and momentum (Lavaysse et al.

2013), leaf area index, soil hydraulic conductivity and

albedo (Hamill 1997). We also extend the SPPT to

perturb tendencies of soil moisture and temperature,

achieved by multiplying the model tendencies with a

random number, keeping the sign of the tendency but

changing its magnitude. Both soil moisture and tem-

perature tendencies are perturbed using the same

random pattern and amplitude to ensure consistency

between the soil moisture and temperature. However,

it is not clear that soil SPPT perturbations are physi-

cally defensible, as will be discussed.

a. Initial state uncertainty

SOIL TEMPERATURE AND MOISTURE

INITIAL CONDITIONS

Soil temperature (T) and soil moisture (u) initial

condition perturbations were generated using EOFs

of normalized differences between soil state estimates

from two different LSMs. This approach allows the

perturbations to describe aspects of uncertainty in the

soil state associated with the choice of LSM. The pat-

terns identified through the EOF analysis describe the

patterns associated with the most variance of the dif-

ference between the two LSMs.

The Global Land Data Assimilation System (GLDAS)

drives several different LSMs to generate optimal

estimates of the soil state using observed and analyzed

atmospheric forcings (Rodell et al. 2004). Here we use

Noah (v2.7; Ek et al. 2003) and the Community Land

Model (CLM v2.0; Bonan et al. 2002) GLDAS output

from 1985 to 2010 at 18 and 3-hourly grid spacing,

provided by the Goddard Earth Sciences Data and

Information Services Center (Rodell and Beaudoing

2007, 2015). For the following analysis, diurnal vari-

ability was not considered and daily means of the data

were used.

To find the perturbation patterns we focused on the

average soil moisture content (%) and soil temperature

(K) in the root zone, which corresponds to the top

;1 m of soil (Guo and Dirmeyer 2006). Because Noah

and CLM have different vertical resolution, the top

1m for Noah and 1.383m for CLM were used. See

Table 1 for details on the vertical resolution of both

LSMs. One other LSM (MOSAIC; Koster and Suarez

1996) was also considered, but due toMOSAIC having

only three vertical layers it was decided to use CLM

instead. The root-zone soil moisture (temperature)

was computed by adding the (layer depth weighted)

soil moisture (temperature) from the top layers down

to the relevant depth (top three layers for Noah, top

eight for CLM). The 18GLDAS data was interpolated

to the higher-resolution GEFS grid using conservative

regridding.

Comparison of soil moisture from different LSMs

is not straightforward. Soil moisture is model specific

in its mean and variability, due to the fact that each

LSM has different and model-specific parameters

such as porosity, hydraulic conductivity, wilting point,

and layer depth, as well as soil moisture being driven by

the specific evaporation and runoff formulation of the

model. Noah and CLM also use different soil textures.

Schaake et al. (2004) show that the total water storage

and its range in four LSMs is in fact very different.

Consequently, Koster et al. (2009) argue that soil

moisture should not be compared indiscriminately among

LSMs. Rather, soil moisture should be interpreted as

an index of the moisture state, and soil moisture should

be standardized before comparison. Standardization here

TABLE 1. Vertical layer depths for the Noah and CLM LSMs.

Noah CLM

0–0.1m 0–0.018m

0.018–0.045m

0.045–0.091m

0.1–0.4m 0.091–0.166m

0.166–0.289m

0.289–0.493m

0.4–1.0m 0.493–0.829m

0.829–1.383m

1.0–2.0m 1.383–2.294m

———– 2.294–3.433m
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refers to subtracting the climatological mean and dividing

by the climatological standard deviation.

To represent the uncertainty in the initial soil state,

the dominant modes of variability of the difference of

the normalized soil moisture and temperature anoma-

lies from both LSMs were estimated. Anomalies for

each land model were computed using the daily clima-

tology of the 26 years of daily GLDAS output. These

anomalies were then standardized at each grid point by

scaling by the full time series temporal standard de-

viation. The initial condition perturbations were com-

puted as follows: let ~u0N and ~u0C be the standardized

anomalies from the Noah and CLM LSMs, respectively,

and similarly for T. Define the difference between the

normalized Noah and CLM anomalies as

Du(t, x
i
, y

j
)5 ~u0N(t, xi, yj)2

~u0N(t, xi, yj) (1)

DT(t, x
i
, y

j
)5 ~T 0

N(t, xi, yj)2
~T 0
N(t, xi, yj), (2)

where t is time and xi, yj describe the longitude and

latitude of the grid points, respectively. We then com-

puted the first 20 joint EOFs (von Storch and Zwiers

1999) of the combined array of moisture and tempera-

ture differences [Du, DT] for each month of the year

after weighting by the cosine of latitude. To produce

more smoothly varying EOF patterns throughout the

year, a 10 day overlap with the prior and following

month was used, so for each month there were roughly

26 years3 50 days data points. The monthly EOFs were

computed to permit seasonal differences in standardized

soil-state difference patterns. The eigendecomposition

produced 20 spatial patterns for Du and DT each (El
m

and Fl
m, l5 1, . . . , 20, m5 1, . . . , 12 for each month of

the yearm) and associated eigenvalues (ll
m). The first 20

EOFs capture about 70% of the total variance of the

differences. The leading EOF patterns for January and

August are shown in Fig. 1. Considering all 12 monthly

EOF patterns, the leading soil moisture EOF patterns

show only a weak seasonal cycle, in contrast to the

higher-order EOFs. This indicates that the leading

mode of variability of the difference betweenNoah and

CLM soil moisture anomalies does not depend much

on the time of year. The Noah LSM has more variance

than the CLM LSM, but both are normalized before

computing the difference. Based on the associated

principal component time series the first EOF is most

likely a representation of the interannual variability of

the normalized differences.

For a given initial date in month m, following

Houtekamer (1993), the perturbation patterns are as

follows:

Pp
u(xi, yj)5s

u �
20

l51

rlpl
l
mE

l
m(xi, yj), p5 1, . . . ,N

p
, (3)

Pp
T(xi, yj)5s

T �
20

l51

rlpl
l
mF

l
m(xi, yj), p5 1, . . . ,N

p
, (4)

where the rlp are randomly drawn from a standard nor-

mal distribution, Np is the number of ensemble mem-

bers, and su and sT are the global mean of the temporal

FIG. 1. Patterns of the leading joint EOF of the Noah and CLMdifference for (a),(b) January and (c),(d) August.

EOF patterns for (left) soil moisture content difference and (right) soil temperature difference. EOF patterns are

unitless and are normalized so that the sum of squares of each pattern equals one.
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standard deviation of the differences Du and DT , re-
spectively. The random seed for the rlp depends on the

initial date, but for a given initial date both T and

u perturbations are given the same random numbers.

This approach allows generation of an arbitrary number

of perturbation patterns and the model differences

provide the relationship betweenDu andDT through the

joint EOF analysis and the perturbation patterns pre-

serve that relationship.

To ensure that the initial condition perturbations do

not add energy or mass to the global system the (area

weighted) global mean of the perturbations was nor-

malized to zero for each ensemblemember. At each grid

cell the mean across ensemble members was also set to

zero. The second normalization ensures that the en-

semble mean is equal to the control mean. These two

normalizations interact with each other, and the first one

is more important. In the experiments presented here

the perturbations are small and changes in the global

mean from the second normalization are negligible. For

experiments with larger perturbations it may be neces-

sary to relax or omit the second normalization. The

perturbed initial condition for all layers is given by the

sum of the unperturbed value and the perturbations

computed in Eqs. (3) and (4). The same perturbation is

applied to all soil layers. By not scaling the soil moisture

perturbations by the layer depth we add the same per-

centage of soil moisture, but not the same amount of

moisture to each layer. An example of the perturbation

patterns for two ensemble members is shown in Fig. 2.

The perturbation patterns show distinct large-scale co-

herence for both soil moisture and temperature.

b. Model uncertainty

We now consider perturbations to LSM parameters.

The two main considerations are amplitude and spa-

tial pattern of the perturbations. Ideally, the spatial

patterns of the perturbations should be based on

empirical knowledge of the parameter uncertainties.

However, observations necessary to estimate these

parameter uncertainties are commonly unavailable,

especially for estimating spatial decorrelation length

scales. Therefore, as a first pass to gauge the impact of

parameter perturbations, random spatial structures

were used: for each ensemble member and case, the

spatial pattern for the perturbation was generated

identically to the atmospheric SPPT patterns (Palmer

et al. 2009), described in section 2. These spatial pat-

terns and the parameter perturbations associated with

them were fixed for the duration of the forecast, but

differed among the perturbed quantities. The ampli-

tudes of the perturbations were based on existing lit-

erature estimating the uncertainty in these parameters,

moderated by physical/ model constraints, where nec-

essary. Table 2 presents a summary of the uncertainty

or range of values associated with the parameters and

variables that are considered in this section.

1) ROUGHNESS LENGTHS FOR HEAT AND

MOMENTUM

The momentum roughness length z0 was perturbed

with logarithmic scaling of the perturbations

z00 5 z
0
10a (5)

FIG. 2. Sample perturbation patterns as computed using Eqs. (3) and (4) for 1 Aug 2014 initial date. (a),(c) Sample

soil moisture perturbations and (b),(d) sample temperature perturbations. Values in the top right corner give the

minimum and maximum values.
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with the spatial pattern a drawn from a normal distri-

bution with a standard deviation of 0.14. Previous

studies (Zhang andAnthes 1982; Diak et al. 1986; Betts

and Beljaars 1993; Hamill 1997) suggested a plausible

multiplicative uncertainty of z0 by a factor of about

0:3162 3:16, which corresponds to a 2 (20:5, 0:5).

Since a is drawn from a normal distribution the value

chosen here means that about 95% of the values of a

are within the interval (20:28, 0:28). This interval is

smaller than the (20:5, 0:5) applied in Hamill (1997),

because values that are too large lead to numerical

instabilities in the GEFS boundary layer winds with the

current parameterization.

The roughness length for heat (zt) was not perturbed

directly, but through perturbations of the momentum

roughness length and perturbations of the ratio of the

heat and momentum roughness lengths zt/z0. This ratio

may range from 1024 2 1021 (Beljaars andHoltslag 1991)

and was perturbed similarly to z0, but with a standard

deviation of 0.08 for the spatial pattern. Again, for

reasons of numerical stability, the perturbation in-

terval was chosen smaller than the uncertainty would

suggest.

2) LEAF AREA INDEX

The value for leaf area index (LAI) in the GEFS

V11.0.0 was set to a fixed value of 3.0 for all vegetation

types. Perturbations were applied using a linear scaling

LAI0 5LAI(11p) , (6)

where the spatial pattern p is drawn from a normal

distribution with standard deviation of 0.25. Measure-

ments of LAI give values from close to 0 to 8, with a

large variability depending on the vegetation type, time

of year, and measuring technique (Bréda 2003).

Choosing a standard deviation of 0.25 means that about

95% of the perturbed LAI values are between 1.5 and

4.5. Using 1-km LAI data from the ECOCLIMAP da-

tabase (Masson et al. 2003), the global average standard

deviation of LAI within a GEFS T574 cell is 0.5 and the

GEFS T574 gridcell internal LAI standard deviation

can be as high as 2.4 (not shown). The chosen value is

conservative compared to these estimates of uncer-

tainty and could potentially be increased in future

studies.

3) SOIL HYDRAULIC CONDUCTIVITY

Soil hydraulic conductivity (SHC) was estimated

from a measure of the soil wetness and an empirical

exponent b:

SHC5 SHC
sat

�
u

u
sat

�2b13

. (7)

Here u is the volumetric soil moisture, usat is the satu-

ration value of the soil moisture, and SHCsat is the sat-

uration soil hydraulic conductivity. Both usat and SHCsat

depend on the soil type.

Clapp and Hornberger (1978) showed that for

measurements of SHC based on soil samples of dif-

ferent soil types the standard deviation for estimates

of this exponent b is approximately 40% of b. Since

the goal of the perturbations was to represent the

uncertainty in these estimates the exponent was per-

turbed using

b0 5 b(11p) , (8)

where the spatial pattern p was drawn from a normal

distribution with standard deviation 0.4.

4) ALBEDO

Albedo a is a bounded quantity and the perturbed

values need to be constrained between 0 and 1. To

achieve this, albedo at a grid point was perturbed by a

quantile mapping from the normal distribution the

spatial patterns are based on to a beta distribution

(Krzysztofowicz 1997; Wilks 2011). A beta distribution

was estimated based on the unperturbed albedo value

TABLE 2. Uncertainty or range of values identified for the perturbed parameters.

Parameter or variable Estimated uncertainty or range Reference

Albedo a 2%–12% of a Grant et al. (2000);

Qu and Hall (2005)

Vegetation fraction s 20%–30% of s Computed from MODIS

vegetation fraction data

Momentum roughness length z0 Factor of 0:3162 3:16 Hamill (1997)

Ratio of heat to momentum

roughness length (zt/z0)

Range: 1024 2 1021 Beljaars and Holtslag (1991)

Soil hydraulic conductivity (SHC),

exponent b

40% of b Clapp and Hornberger (1978)

Leaf area index (LAI) Range: 0–8 Bréda (2003)
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and a perturbation size. The beta distribution proba-

bility density function is

beta(x, a,b)5
xa21(12 x)b21

ð1
0

ta21(12 t)b21
dt

, (9)

with the shape parameters a and b are defined as

a5m2(12m)/s2 2m , (10)

b5 a(12m)/m , (11)

where m5a is the unperturbed albedo value and the

mean of the beta distribution, and s5 pam(12m) is the

standard deviation of the beta distribution. The per-

turbed albedo value is then the value of the beta distri-

bution corresponding to the percentile of the value given

by the spatial pattern. For example, if the spatial pattern

at a grid point is equal to 0.5, which corresponds to ap-

proximately the 70th percentile for a standard normal

distribution, the 70th percentile of the estimated beta

distribution at that grid point is picked as the perturbed

albedo value.

The parameter pa, which scales the standard deviation

of the beta distribution, is a tunable parameter. Qu and

Hall (2005) estimate the seasonal standard deviation of

surface albedo (their Fig. 2). Variability is largest over

regions with seasonal snow cover (about 12%) and

smaller in the tropics (closer to 2%–4%). Estimates of

the diurnal variability of surface albedo, based on point

measurements (Grant et al. 2000, their Fig. 2) suggest a

global land mean standard deviation of around 5%. For

perturbation sizes used in previous studies, Lavaysse

et al. (2013) show the standard deviation of the initial

perturbed albedo values in their Fig. 1a with values be-

tween 2% and 7%. The standard deviation of albedo

values in a 5-day control run is a measure of the diurnal

albedo variability in the GEFS. This is around 10% over

most land areas, 20% over deserts, and 40% over snow

covered ground. Based on these considerations a con-

servative perturbation size of pa 5 0:2 was chosen, which

resulted in a standard deviation of the beta distribution

of 0.05 for mean albedo values equal to 0.5 and the 70th

percentile value from the example above would be

about 0.59. For a mean albedo of 0.1 the 70th percentile

value of the beta distribution corresponds to a perturbed

albedo value of 0.11.

5) VEGETATION FRACTION

Similar to albedo, vegetation fraction s is bounded

between 0 and 1. Vegetation fraction data at 1-km

resolution based on measurements from the Moderate

Resolution Imaging Spectrometer (MODIS) (Broxton

et al. 2014) vary the most within the larger GEFS grid

cell in regions with intermediate vegetation fraction

values and vary the least in regions with vegetation

fraction close to 0 or 1. Accordingly, vegetation frac-

tion uncertainty is largest for intermediate values

and smallest for vegetation fraction values near 0 and 1.

Global average standard deviation of the MODIS

vegetation fraction data within a GEFS T574 grid cell

is 2% and the maximum standard deviation within a

GEFS T574 grid cell can be as high as 50% (not shown).

For intermediate mean vegetation fraction values the

standard deviation (i.e., uncertainty) is around 20%–

30% on the GEFS T574 grid. Based on these consid-

erations the vegetation fraction was perturbed in an

identical manner to the albedo, but with perturbation

size ps 5 1 so that the standard deviation of the per-

turbations is 0.25 for vegetation fraction values of 0.5

and the perturbations go to zero as s approaches its

upper or lower bound.

c. Stochastically perturbed soil temperature and
moisture tendencies

Another method for parameterizing model uncer-

tainty is to perturb soil tendencies directly. Here this was

accomplished by extending the SPPT method from the

atmosphere to soil moisture and temperature. SPPT

multiplies the tendency computed by the model physics

step (for soil, this would be the full tendency) by a

random pattern with spatial and temporal coherence.

For simplicity and consistency, the random spatial

pattern generation procedure used for the atmospheric

SPPT was used for the soil SPPT as well. The amplitude

used to generate the soil SPPT pattern is equal to the

free atmospheric SPPT amplitude. This SPPT pattern

was then applied to the soil temperature and moisture

tendencies at each soil level. Since the soil tendency

perturbations were applied after surface fluxes were

computed, this could cause local violations of the sur-

face energy budget. However, it is unclear how big

an impact this may have on forecast accuracy, as any

perturbation would be counterbalanced at the next

time step by an adjustment of the fluxes. Future re-

search may explore modifying surface fluxes, either in

response to soil SPPT or perturbing fluxes in place of

perturbing soil tendencies directly.

d. Verification methods

One characteristic of a reliable ensemble is that the

spread of the ensemble should match the ensemble-

mean forecast error. The ensemble-mean forecast error

is the root-mean-square error (RMSE) between the en-

semble mean and the verification. Ensemble spread was
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computed by computing the variance at each grid point

and forecast hour, averaging over all initial times and

then taking the square root (Fortin et al. 2014).

Let fp(tn, hk, xi, yj) (p5 1, . . . , Np, n5 1, . . . , Ni, hk 5
0, 6, . . . , 120) be the forecast of ensemble member

p for initial date tn and forecast hour hk, and let

o(tn, hk, xi, yj)(n5 1, . . . , Ni, hk 5 0, 6, . . . , 120) be the

verification valid at the same time as the forecast for

initial date tn, forecast hour hk and location xi, yj. Here

Ni is the number of initial dates (11 in January and 11

in August) and Np 5 20 is the number of ensemble

members. The time-averaged ensemble spread at each

grid point is given by

s(h
k
, x

i
, y

j
)

5
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where f (tn, hk, xi, yj) is the ensemble mean. For area

averages, the variance [s(hk, xi, yj)
2] was area averaged

over the region of interest and then the square root is

taken. Area averages were computed by weighting by

cosine of latitude. The RMSE between the verification

and ensemble mean is computed at each grid point and

forecast hour:

r(h
k
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i
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j
)5
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To compute the regional RMSE, the mean square error

[MSE, r(hk, xi, yj)
2] was area averaged over the region

of interest weighted by the cosine of latitude and the

square root was taken last, in the same manner as the

regional spread estimates. Bias-corrected RMSE was

computed in an identical manner, but using the bias-

corrected ensemble mean. The bias was estimated as the

difference between the verification and the ensemble

averaged over all initial dates and ensemble members:

b(h
k
, x

i
, y

j
)5

1
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i
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the bias-corrected ensemble f
0
p(tn, hk, xi, yj) is then

given by

f
0
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j
)5 f
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)2b(h
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Statistical significance of the differences in spread

or RMSE is based on estimating the uncertainty by

randomly removing 5% of the grid points 500 times and

computing the lower and upper 2.5th percentiles of the

resulting spread or RMSE distribution. This gives an

estimate of the 95% confidence intervals for the control

and all experiments. Different values for number of

bootstrap samples and the amount of data removed

were tested and only small differences were found. The

difference in spread or RMSE is deemed to be signifi-

cant if there is no overlap between the confidence in-

terval of the control and any given experiment.

Rank histograms (Hamill 2001) for raw and bias-

corrected ensembles were generated to assess ensem-

ble spread and test for outliers. For an ensemble with

forecast members and the analysis sampled from the

same distribution, the rank histogram should be flat [i.e.,

each rank is equally likely and the fraction of occurrence

of each rank is 1/(Np 1 1)]. In the case presented here,

with 20 ensemble members, that corresponds to 0.0475

and the fraction of occurrence of outliers (both on the

low and high end) would be equal to 0.095.

The pattern correlation (Wilks 2011) between spread

and RMSE patterns was computed to assess how well

the spatial patterns of spread and RMSE match. The

pattern correlation is the linear correlation between the

cosine-weighted RMSE and spread pattern at a given

forecast hour.

These metrics were evaluated for near-surface vari-

ables T2m and U10m. ERA-Interim (ERAI; Dee et al.

2011) reanalysis data at 6-h intervals was used for global

verification. ERAI was used instead of the GEFS anal-

ysis so that the verification is independent of the forecast

model. While ERAI is still heavily influenced by its

underlying model, T2m observations were assimilated

in this reanalysis and where those observations were

available ERAI is constrained by them. We also eval-

uated the performance over the contiguous United

States (CONUS) where a dense network of observed

T2m data was available (UCAR 1987). Results show

that while the bias differs between the CONUS surface

observations and ERAI, the general error character-

istics of the GEFS were the same. For global evalua-

tion, statistics were computed over the Northern

Hemisphere land area (208–608N), the tropical land

area (208S–208N), and the Southern Hemisphere land

area (608–208S).

4. Experiment setup

Each experiment used a 20-member ensemble ini-

tialized at 0000 UTC on 11 dates in January and 11 dates

in August 2014 (every third day) and integrated out to

5 days at T574. While 5 days is very short compared to

time scales of soil moisture variability, the atmospheric
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response to methods of stimulating near-surface vari-

ability should be visible within a few days. The in-

tegration time and ensemble size were chosen based on

the computational resources available. August and

January were chosen to sample both boreal summer

and winter cases. The sample size is 11 dates 3 20

members5 220 cases for each season. This is small, but

large enough to get a qualitative estimate of the impact

the surface perturbations have on ensemble spread and

RMSE. All experiments, including the control, used

the same atmospheric initial conditions and atmo-

spheric SPPT, SKEB, and SHUM. The surface initial

conditions in the control run were identical for each

ensemble member.

TheEsfcIC experiment introduces soil temperature and

moisture perturbations to the initial state, but keeps all

other surface and atmospheric initial conditions and

parameters the same as the control. Three experiments

use one surface perturbation method individually with-

out perturbing the initial soil state: Evfrac perturbs only

the vegetation fraction, Ealb perturbs only surface al-

bedo. Essppt perturbs the soil moisture and temperature

tendencies, via the soil SPPT extension, but no soil pa-

rameters nor the initial soil state. Finally, Eall combines

all surface parameter, soil-state and soil-tendency per-

turbations. Table 3 provides a synthesis of the experi-

ments and which parameters, states and/ or tendencies

were perturbed. During initial testing we also performed

single parameter perturbation experiments for mo-

mentum roughness length, the ratio of heat and mo-

mentum roughness length, soil hydraulic conductivity

and leaf area index, and we performed another experi-

ment that combines albedo, vegetation fraction, mo-

mentum roughness length, the ratio of heat and

momentum roughness length, soil hydraulic conductiv-

ity and leaf area index perturbations (Elsmparm). We do

not show results from these experiments as the impact is

fairly small compared to the perturbations mentioned

above, and they are included in the Eall experiment.

In addition to these T574 experiments to 5-day lead

time, a smaller set of experiments (control, EsfcIC, Eall,

and Evfrac) was run at lower resolution (T254) out to

10-day lead time with the same number of ensemble

members and the same initial conditions. These fore-

casts permit evaluation of the spread and error growth of

the surface perturbations to longer lead times. Because

of limited computational resources, only select experi-

ments were included in the simulations out to 10 days.

5. Results

Figure 3 shows that over the CONUS, the GEFS had

slightly smaller RMSE when compared to ERAI than

when compared to observations (Figs. 3a–h). The bias

correction made the ensemble appear nearly properly

dispersive when compared to ERAI, but less so when

compared to observations (Figs. 3a–c,e–g). When in-

troducing an observational and representativeness

error of 1K into the spread calculation following

Berner et al. (2015), the ensemble appeared under-

dispersive only for the first 24 h of the forecast. The

increase in spread due to the perturbations was also

still within the 1-K observational error estimate. The

lower-resolution T254 experiments showed a large

increase in spread for both the Evfrac and the EsfcIC

experiments for lead times greater than 5 days in

winter. For EsfcIC this was related to a large spread

increase ($0:5K) in the central U.S. region, whereas

for Evfrac this was more related to a spread increase in

the southern/southeastern United States (not shown).

Recall that the Eall experiment includes all surface

perturbations and not only EsfcIC and Evfrac. The EsfcIC

perturbations had a larger impact at the initial time

for the lower-resolution T254 experiment than at

T574, possibly a result of the larger spatial coherence

of the soil perturbations at lower resolution. The

spread increase due to the Eall experiment in the

summer was largest around forecast hour 60 and de-

creased with lead time after that (Figs. 3j,l).

Comparing global land control ensemble spread and

RMSE in Fig. 4 for T2m shows that the ensemble was

underdispersive near the surface, with spread being 1.0–

2.5K lower than RMSE (Figs. 4a–c,g–i). However, when

considering the bias-corrected RMSE, it was clear that a

large portion of the difference between spread and

RMSE was due to systematic model error; in the tropics

(Figs. 4b,h) and the summer hemispheres (Figs. 4c,g)

spread and bias-corrected RMSE were comparable.

TABLE 3. Details of the experiments discussed in the text. We

also performed experiments for each parameter/ variable sepa-

rately. For brevity, the results of experiments for perturbing z0,

zt/z0, SHC, and LAI individually are not shown.

Experiments

Perturbation Eall Elsmparm EsfcIC Ealb Essppt Evfrac Control

SMC and

STMP IC

3 3

a 3 3 3
s 3 3 3
z0 3 3
zt/z0 3 3
SHC 3 3
LAI 3 3
Landsppt 3 3
SPPT, SKEB,

SHUM

3 3 3 3 3 3 3
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The impact of the surface perturbations was generally

small but largest in the summer hemispheres, when

the atmosphere is most responsive to the soil, and in

the tropics (Figs. 4e,f,j,k). Overall, albedo, vegetation

fraction, and stochastically perturbed soil moisture

and temperature tendencies had larger impact on T2m

spread over land; the combined perturbations led to a

spread increase of up to 0.4K in the tropics (Figs. 4e,k)

and Southern Hemisphere summer (Fig. 4f) and 0.2K

in the Northern Hemisphere summer land areas

(Fig. 4j). However, even when compared to the bias-

corrected RMSE, the spread of the ensemble was still

too small in the winter hemispheres for lead times up

to 96 h (Figs. 4d,l). The underdispersive character of

the ensemble was less severe at longer lead times.

Figure 5 shows the same quantities for U10m. The

difference between spread andRMSEwasmuch smaller

than for T2m, and the unadjusted ensemble spread and

RMSE were similar in magnitude in the summer hemi-

spheres at lead times$72 h (Figs. 5c,g). When assuming

an observational error of about 1m s21 (Gao et al. 2015),

spread and RMSE were similar in magnitude for almost

all lead times. The spread increases from the sur-

face perturbations were very small, on the order of

0.05m s21 and only Essppt and Eall had a significant

impact. This is consistent with the results of Lavaysse

et al. (2013) who found thatU10m and precipitation are

relatively insensitive to most surface perturbations.

Koster et al. (2006) also show that temperature is

much more controlled by the land surface than pre-

cipitation. T2m also showed larger sensitivity than

U10m to soil moisture perturbations in the results

presented by Tennant and Beare (2014).

The impact of the perturbations on precipitation,

surface pressure, precipitable water and surface sen-

sible heat flux was also examined, but no signifi-

cant change in spread was found for the first three

variables, and results are not shown. Area-averaged

surface sensible heat flux spread increased about

5Wm22 in the summer hemisphere and the tropics

and 1–2Wm22 in the winter hemisphere. This corre-

sponds to a relative increase in spread of 25%–30% in

the summer hemisphere, 15%–20% in the tropics, and

15%–25% in the winter hemisphere.

FIG. 3. Ensemble spread and RMSE for T2m averaged over CONUS as a function of lead time for the T574 and T254 experiments. T574

RMSE, bias-corrected RMSE based on ERAI, and spread for (a) January and (b) August 2014, T254 RMSE, bias-corrected RMSE based

on ERAI, and spread for (c) January and (d) August 2014. T574 RMSE, bias-corrected RMSE based on T2m observations, and spread

for (e) January and (f) August 2014, T254 RMSE, bias-corrected RMSE based on T2m observations, and spread for (g) January

and (h) August 2014. Spread difference (experiment 2 control) for T574 for (i) January and (j) August 2014. Spread difference (ex-

periment 2 control) for T254 for (k) January and (l) August 2014. Shading indicates the 95% confidence interval around the control

spread and diamonds mark where the spread is statistically significantly different from the control.
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FIG. 4. Ensemble spread andRMSE forT2m averaged over global land areas (excludingAntarctica andGreenland) as a function of lead

time. RMSE, bias-corrected RMSE, and spread for (a) Northern Hemisphere January 2014, (b) tropics January 2014, and (c) Southern

Hemisphere January 2014; spread difference (experiment2 control) for (d) NorthernHemisphere January 2014, (e) tropics January 2014,

and (f) Southern Hemisphere January 2014; RMSE, bias-corrected RMSE, and spread for (g) Northern Hemisphere August 2014,

(h) tropics August 2014, and (i) Southern Hemisphere August 2014; and spread difference (experiment 2 control) for (j) Northern

Hemisphere August 2014, (k) tropics August 2014, and (l) Southern Hemisphere August 2014. Shading indicates the 95% confidence

interval around the control spread and diamonds mark where the spread is statistically significantly different from the control.
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Figure 6 shows that at 6-h lead time, the albedo (Ealb)

induced T2m spread increase followed the local noon

(Fig. 6b). The spread increase eventually spanned the

whole globe within the first 24 h of the forecast (not

shown). Somewhat counterintuitively, the vegetation

fraction (Evfrac) T2m spread increase (Fig. 6c) was largest

during the evening and night and in regions where the

vegetation fraction has an intermediate value. This may

simply be a result of the vegetation fraction perturba-

tions being largest for intermediate values of vegetation

fraction. Similar spread increases during evening hours

were seen for the soil moisture and temperature per-

turbations (EsfcIC, Essppt) (Figs. 6d,e), with the largest

effects in arid and semiarid regions (see below).

FIG. 5. As in Fig. 4, but for U10m.
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The nighttime peak in spread increase could be due to

daytime perturbations being mixed through a greater

depth with an unstable boundary layer. Considering all

surface perturbations together, spread was increased

across most land areas by ;0:3 K (Fig. 6f) at 6-h lead

time. In some regions the spread increase was larger

than ;0:5K. Comparing the patterns indicates that

those high values were mainly due to the vegetation

fraction (Evfrac) perturbations.

To support the claim that the soil moisture and tem-

perature initial condition perturbations tended to in-

crease T2m spread more in arid regions, Figs. 7a, 7b, 7d,

and 7e show the global land spread and spread differ-

ence as a function of initial soil moisture percentile. For

the control run, with no soil state or parameter pertur-

bations, T2m spread initially was about the same across

all percentiles of initial soil moisture. By day 3 of the

forecast, the largest spread was associated with the 25th–

95th percentiles. This is a consequence of theT2m spread

being largest at high tomedium soil moisture percentiles

in the Northern Hemisphere and largest at low to me-

dium percentiles in the tropics (not shown). The EsfcIC

experiment spread differences (Fig. 7d) increased the

most for lower soil moisture percentiles with a distinct

diurnal cycle. The diurnal cycle is related to a nighttime

maximum of spread increase over the Sahara. As soil

moisture and temperature perturbation patterns tend

to be negatively correlated (Fig. 2), we speculate that

during the night, the boundary layer becomes decoupled

from the atmosphere, which together with negative soil

moisture (positive temperature) perturbations cooling

the surface less and positive soil moisture (negative

temperature) perturbations cooling the surface more

increases the spread in T2m. Compared to the Evfrac

(Fig. 7e) and Essppt (Fig. 7b) experiments, the spread

increase from EsfcIC was small. Sensible heat flux dif-

ferences due to EsfcIC perturbations between the con-

trol and the EsfcIC experiments were on the order of

10–30Wm22 over large regions and exceeded 50Wm22

locally (not shown). These were slightly smaller than

FIG. 6. Ensemble spread of T2m (K) at lead time 6 h for August 2014 initial dates. (a) control ensemble spread,

(b) difference between Ealb spread and control spread, (c) difference between Evfrac spread and control spread,

(d) difference between Essppt spread and control spread, (e) difference between EsfcIC spread and control

spread, and (f) difference betweenEall spread and control spread. The black solid and dashed vertical lines indicate

the locations of local midnight and noon respectively.
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those presented by Sutton et al. (2006) and comparable

to those presented by Chen et al. (1996). For Evfrac the

spread increase was largest between the 20th–80th

percentiles of initial soil moisture. It was also largest

in the 40th–90th percentile range of initial vegetation

fraction (Figs. 7c,f). Recall that the vegetation frac-

tion perturbations were largest for intermediate values

of vegetation fraction. For Essppt (Fig. 7b), the spread

increase pattern and diurnal cycle was very similar

to EsfcIC, with the most spread increase for low soil

moisture percentiles and with a diurnal cycle maximum

at 0000 UTC and minimum at 1200 UTC, but much

larger amplitude than EsfcIC.

Figure 8 shows the T2m RMSE patterns and differ-

ences between control and the experiments at forecast

hour 6. The differences locally were as large as 0.1–0.3K,

but the global average was on the order of10.02K. For

most forecast hours the difference in global RMSE be-

tween the control and the experiments was statistically

insignificant, but for U10m in January the differences for

Essppt, Evfrac, and Ealb were as large as 0.04m s21 and are

significant. This means those experiments made the

RMSE slightly worse compared to the control. Note that

the increase in RMSE, although statistically significant,

was small compared to the control RMSE of 2–3ms21.

The spatial patterns of the differences show only small-

scale variability (Figs. 8b–d), except for the EsfcIC per-

turbations (Fig. 8e) where the difference shows a distinct

large-scale spatial pattern consistent with the scale of

soil-state perturbations.

A comparison of the RMSE, spread and bias-corrected

RMSE patterns for T2m at forecast hours 6 and 120 is

given in Fig. 9 for the control and theEall experiment. The

raw and bias-corrected RMSE are shown only for the

control (Figs. 9a,b,e,f), since the patterns are almost in-

distinguishable between control and Eall. Experiment

Eall increased spread compared to the control, espe-

cially over central South America, southern Africa,

FIG. 7. Global land area T2m spread increase (K) compared to control for August 2014 initial dates as a function of initial soil moisture

content percentile for (a) control, (b) Essppt 2 control, (d) EsfcIC 2 control, and (e) Evfrac 2 control experiments. The left y axes show the

initial soil moisture percentiles and the right y axes show the corresponding volumetric soil moisture content. As a function of initial

vegetation fraction for (c) Essppt 2 control and (f) Evfrac 2 control experiments. The left y axes show the initial vegetation fraction

percentiles and the right y axes show the corresponding vegetation fraction cover in %.
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and western North America at forecast hour 6 (Figs. 9c,d).

By forecast hour 120 (Figs. 9g,h) the spread increase in

Eall compared to the control was less localized and is

visible across all land areas. In an ideally constructed

ensemble, the spread pattern should match the RMSE

pattern. While the spread amplitude was too small at

most locations, it is hard to determine from the maps

whether the patterns match closely or not; differences

could in part be due to limited ensemble size and an

insufficient number of cases.

To quantify how well the global patterns of spread

and RMSE agree, the pattern correlation (spatial

correlation) of the two quantities was computed.

We note that this global metric may somewhat exag-

gerate spread-skill relationships for reasons explained in

(Hamill and Juras 2006). Figure 10 shows that the pat-

tern correlation over land areas (excluding Antarctica

and Greenland) is about 0.2 larger when using

the bias-corrected RMSE. Surface perturbations

have a larger impact on the correlation for the bias-

corrected RMSE than for the raw RMSE, especially

for short lead times ,48 h. The bias-corrected correla-

tion curves cluster together, and the raw correlation

curves cluster together after a lead time of 72 h. The

correlation between spread and RMSE patterns in-

creases with forecast hour, mainly due to the spread

pattern changing and becoming more similar to the

RMSE pattern rather than the RMSE pattern changing

(not shown). Whitaker and Loughe (1998) also found

that Northern Hemisphere spread–error correlations

peak in the medium range and are associated primarily

with the growth of synoptic-scale perturbations associ-

ated with baroclinic wave growth. The pattern correla-

tion curves for the T254 experiments (Figs. 10c,d) flatten

out around forecast hour 120 for the bias-corrected

RMSE and saturate at around 0.9. Interestingly, the

global pattern correlation for T254 in the August cases

is much higher than for the T574 cases. The surface

perturbations decreased pattern correlations during

the first two forecast days in boreal winter. This effect

was stronger for the bias-corrected RMSE and could be a

consequence of using a perturbationmethodology divorced

FIG. 8. RMSE of T2m (K) at lead time 6 h for August 2014 initial dates. (a) control RMSE, (b) difference between

Ealb RMSE and control RMSE, (c) difference between Evfrac RMSE and control RMSE, (d) difference between

Essppt RMSE and control RMSE, (e) difference between EsfcIC RMSE and control RMSE, and (f) difference be-

tween Eall RMSE and control RMSE.
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from data assimilation, which would ensure pertur-

bations were consistent with observation uncertainty

and with background error (Hamill et al. 2002).

Rank histograms are another way to assess the re-

liability of the ensemble. If the ensemble samples

forecast uncertainty, a perfect observation would be

equally likely to be at any rank in the ensemble, when

averaged over enough realizations. Figures 11a and

11c show that at forecast hour 6 both the raw and the

bias-corrected ensemble have U-shaped rank histo-

grams for the control and for all experiments. There

are only minor differences visible between the control

and the perturbation experiments, with the Eall ex-

periment exhibiting the smallest fraction of outliers.

Even in that case the fraction of occurrence of outliers

(the sum of the first and last rank) in the raw ensemble

was 0.4 instead of the expected 0.095. The fraction of

occurrence of outliers was roughly halved when gener-

ating rank histograms with the bias-corrected ensemble.

By forecast hour 120 (Figs. 11b,d), as the spread of the

ensemble increased, the bias-corrected ensemble was

closer to a flat rank distribution, especially for the Eall

experiment, indicating that the bias-corrected ensemble

has more realistic sampling properties. The raw ensemble

however still had a U-shaped rank distribution at this

lead time.

6. Conclusions

The goal of this work was to test the hypothesis that

land surface state and parameter perturbations would

improve consistency between spread and RMSE for key

FIG. 9. Comparison of control and EallT2m (K) for August 2014 initial dates. Lead time of 6 h for (a) control

RMSE, (b) control bias-corrected RMSE, (c) control spread, and (d) Eall spread, and a lead time of 120 h for

(e) control RMSE, (f) control bias-corrected RMSE, (g) control spread, and (h) Eall spread.
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surface variables such as T2m in the GEFS. The surface

perturbation magnitudes and spatial patterns were

informed by previous research on state and parameter

uncertainty and sensitivity where possible. Perturba-

tions were applied to momentum roughness length,

the ratio of heat and momentum roughness lengths,

soil hydraulic conductivity, leaf area index, surface

albedo, vegetation fraction, soil moisture and tempera-

ture tendencies, and the initial conditions of soil mois-

ture and temperature. Collectively, these perturbation

approaches had a small but positive impact on the

spread of T2m and U10m. The GEFS showed the largest

sensitivity to soil moisture and temperature tendency,

vegetation fraction, and albedo perturbations. The sur-

face perturbations introduced here did not include snow

cover and amount perturbations, and the lack of in-

creased spread in winter could be due in part to this.

Spread increase from soil initial condition pertur-

bations (EsfcIC) was small. Soil-state perturbations

were produced from a weighted, random linear com-

bination of EOFs of soil-state uncertainty estimated

from normalized anomalies between two soil analyses,

an admittedly more ad hoc approach than through,

say, ensemble-based data assimilation. While sensible

heat flux differences due to EsfcIC were comparable to

other studies, the impact on T2m spread of the EsfcIC

FIG. 10. Pattern correlation between T2m global land area RMSE and spread patterns at all lead times. (a) T574

pattern correlation for all initial dates in January 2014 for RMSE and spread (solid) and bias-corrected RMSE and

spread (dotted). (b) As in (a), but for initial dates in August 2014. (c) T254 pattern correlation for all initial dates in

January 2014 for RMSE and spread (solid) and bias-corrected RMSE and spread (dotted) to 10 days lead for a

subset of experiments. (d) As in (c), but for initial dates in August 2014. All land data points excluding Antarctica

and Greenland are used to compute the pattern correlation.
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perturbations was very small, typically 0:12 0:3 K and

localized compared to other surface perturbations.

Possible explanations include that the perturbations

were unrealistically small. Additionally, Koster et al.

(2006) and Zhang et al. (2011) showed for previous

versions of the Global Forecast System that soil per-

turbations did not impact the atmosphere as much as

in other atmospheric models (i.e., the soil and atmo-

sphere may be too weakly coupled in this version of

the GEFS).

The experiments with the largest impact on ensemble

spread (Evfrac, Essppt, Eall) had a lower bias-corrected

pattern correlation at 24-h lead time than the control,

but this difference disappeared at longer lead times.

Pattern correlation increased with lead time for all

experiments.

Similar to the pattern correlations, the rank histo-

grams indicated substantial underdispersion but became

slightly flatter as lead time increased.As with the pattern

correlation, the bias correction of the ensemble had a

much larger impact on rank histogram improvement

than surface perturbations, although the surface per-

turbations also improved the distribution.

While the increase in spread was small, collectively the

surface perturbations did increase T2m spread to match

bias-corrected RMSE in the tropics and the summer

hemisphere during the first few days of the forecast. The

difference between the bias-corrected RMSE and raw

RMSE was larger than the difference between bias-

corrected RMSE and spread. This indicates that the en-

semble spread being smaller thanRMSE near the surface

was not entirely due to insufficient spread in the ensem-

ble. Rather, model bias contributed equally or more to

the lack of calibration of the ensemble near the surface as

did the lack of spread. This bias could be a result of biased

initial soil states, imperfect LSMs, and/ or biased forcings

(downward solar and longwave radiation) used by the

LSM. There is evidence that the GEFS is not alone in

having a large bias compared to the uncertainty in-

troduced through perturbation strategies. Berner et al.

(2015) showed that bias correcting aWRFensemble has a

similar impact on T2m skill as introducing a combination

of stochastic perturbation schemes.

The perturbations presented here likely did not ac-

count for the entire parameter uncertainty in the model.

The perturbation sizes were chosen to be conservative

even within the uncertainty estimates that were found.

The different perturbations are likely not additive. The

ratio of the sum of the spread increase of all single

perturbation experiments to the spread increase due to

the Eall experiment ranges from 0.5 to 1.5 for hemi-

spheric averages. There are nonlinear interactions be-

tween the perturbations that can lead Eall spread to be

much larger or much smaller than the sum of spread of

the individual experiments. In conclusion, it remains

possible that perturbing even more parameters or per-

turbing the tested ones with larger amplitudes would

lead to more spread increase.

Overall, it appears that land surface temperature bias

in the GEFS is a much larger contributor to the spread

deficiency than the lack of perturbations to land surface

states, parameters and tendencies. These results suggest

that while the surface perturbations introduced here are

useful and address important aspects of model uncer-

tainty, addressing model bias is equally important and

should be a priority for model developers.

FIG. 11. Rank histogramofT2m forAugust 2014 initial dates for the raw ensemble (a) at lead time of 6 h and (b) at

lead time of 120 h, and the bias-corrected ensemble (c) at lead time of 6 h and (d) at lead time of 120 h. Rank

histograms are based on all land data points excluding Antarctica and Greenland.
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